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1 Methods for Proving Minimax Lower Bounds

1.1 Recap: Testing lemma and divergence measures for minimax lower
bounds

We have been studying minimax lower bounds. We have a semi-meric p : © x © — R>q
and a 26-separated set {0',...,0M} C ©. In our testing situation, we have the joint
distribution

0: J ~ Unif({1,2,...,M})
N Z|T=j ~Py.

We have an increasing function ®, as well. We proved the following result:

Proposition 1.1 (From estimation to testing). Let ¥ be increasing and {0',...,0M} be
26-separated for § > 0. Then

Mu(8(P), @ 0 p) = B(0) inf Q(2) # J).

We also defined the total variation distance the K-L divergence, and the Hellinger
distance

P~ Qlirv =5 | (@) - ala)l o

D(M@):/X () log E;d””

PH@/F V(@) d

These had the following relationships:

IP— Qv </iD(P || Q),



IP - Qllrv < VIR Q) /1 Hz(i”@).

<1

H(P || Q) < ;D(E || Q).

1.2 Le Cam’s two points method

Take M = 2. Then J ~ Unif({0,1}), and Z | J = j ~ P}, and Q = 3P + 3P;. We claim
that

infQU(2) # J) = 51~ [Po — Pillzv).

Proof. For any 1, we can find an A such that

1 z€A
w(x)_{o x € A°.

Then
1 1 .
QUA(Z) = J) = 5P1(A) + S Fo(A)
1 1
= 5(]P’l(A) —Po(4)) + 7
If we take the supremum over all ¢, we get

sup Q(¢(2) = J) = sup %(IP’I(A) —Po(A)) + %

¥
1 1
=[P — P —
2“ 1 ollTv + 2
The probability of the bad event is then
. 1 1
lﬁfQW(Z) #J) = 5~ §HP1 — Po|lrv. O

This gives the following theorem.

Theorem 1.1 (Le Cam’s two points lower bound). For all 6 > 0 and Py,P; € P with
p(0(P0), 0(P1)) > 20,

o(6)

My (0(P), @0 p) > ?(1 — IP1 = Pol|Tv)-

For the generalization to Le Cam’s convex hull method, read chapter 15.2.2 in Wain-
wright’s textbook.



Example 1.1 (Gaussian location family, d = 1). Our model is P = {Py = N(6,02) : 0 €
R}, where o is known. We have the semimetric p(#',0)) = |6/ — 0| and ®(¢) = t>. Our

o2

sample is X1, ~ Py. The true minimax risk is M,, = 2-.
Cam’s method:

Consider Pys and Py, so p(24,0) > 2§. Then

Here is a lower bound by Le

52 n n
Ma(0(P);10 = 0'1%) > (1 = [P35 = Py rv),

where the n only appears in the bound as the fact that the measures are product measures.
We want to lower bound 1 — ||P5s — P |lrv by 1/2. We have by Pinsker’s inequality and
the tensorization property of K-L divergence

1
P55 — Pg |3y < §D(P§5 | P9)

1
= §ND(P25 || Po)
1 2
1)
2 202
nd?

0?2’

52
Now choose 22 =1 50§
o 27

bound

2

2 . .
n = 5, Then [[Py; — Pty < %, and we get the minimax lower

52
>7n.
/\/ln_2

Up to constants, this is sharp.
Here is the problem with Le Cam’s method. If we take # € RY with Py = N (6, 021,)
for d > 2, then we will get the lower bound

0_2

>7
"= 16n’
2d

n

M
even though the actual minimax risk is M, = ¢

1.3 Mutual information

Here, we will develop some tools for Fano’s method, which is a sharper method for lower
bounding the minimax risk. Suppose we have two random variables (X,Y) ~ Pxy. We
want a measure of their dependence/independence (not the same as correlation). If X is
independent of Y, we have

]P’)Qyszxpy:/

Pxy(x,y)dy x / Pxy(z,y)dx.
% X

3



To get a measure of independence, we should look at the distance between these two
objects:

D <]PX,Ya/ Pxy(x,y)dy x / Pxy(x,y) de) .
Yy X
Definition 1.1. The mutual information between X and Y is
I(X; Y) = D(P_}QY H IP)X X Py).

Remark 1.1. The mutual information is always > 0. Although the K-L divergence is not
symmetric, we have I(X;Y) = I(X;Y).

If X and Y are independent, I(X;Y) =0, and if Y = f(X), the mutual information is
maximized.
Recall that
0. {J ~ Unif({1,2,...,M})

Z|J=jn~Py.
Then
I(J;Z) = D(Q2,7 || Q2 x Qy)
| M
= > DBy || ba®)
j=1
where

1 M
j=

Suppose 7 = § for all j. Then I(J;Z) = 0. Conversely, if the §/ are far away from each
other, then I(J; Z) will be large.
Here are two upper bounds of I(J; Z) we will now prove:

Proposition 1.2.

M
1
] 2) < 55 ;ID(PW || Pgr) < nﬁxD(ng || Pgr).
‘77 =

Lemma 1.1 (Yang-Barron’s bound). Let Nxi,(e;P) be an e-cover of P in /Dxky,. Then

1(Z;J) < inf % 4 log Nk, (g; P)



1.4 Fano’s inequality

Let
Q- J ~ Unif({1,2,...,M})
N Z|J=j~Py.
Lemma 1.2.
I(Z;J) + log2

mfQU(Z) £ ) 21— =

The proof is in Section 15.4 and requires some ideas such as the entropy. This does not
require any restriction on the Py;. This lower bound gives us

Proposition 1.3. Let {0',...,0M} be 20-separated in the semimetric p. Then

M (0P o p) = 09) (1 (0T,

log M
When using this lower bound, we will find §,, such that

_1(Z;J) +log2 1
log M -2

Then we will get

So we need to upper bound I(Z;J).
A simple upper bound is given by

1 1 U
I(J;Z):MZD(PGJ‘HMZPN)
j=1 =1

| M
< M2 Z D(}P’m || PG‘Z)
Jt=1
Where we have used Jensens’s inequality to show that the K-L divergence is convex in the
second argument.
< max D(Fy; || Fye)
J7

Example 1.2 (Gaussian location family, d > 2). Our model is P = {Py = n(0,0%1,) : 0 €
R4}, where o is known. Our semimetric is p(#',6) = ||’ — 0|2 with ®(t) = t>. The true
minimax risk is

M,, = infsup E[||§ — ]3] = 2%
0 6 n



The lower bound by Fano’s method gives

I(Z;J) +log2
> - 2

i D(P7. || PP, log 2
> (0) (1_ma"ﬂvk (B [| Fgi) +log )
log M

Our goal is to find the largest &,, M, {#',... 6™} such that
(a) 167 — 0"l > 20n,

(b)

max; x D(Py; || Pp) + log2 1
log M -2

Here is our construction: Let g, = O'\/% and §,, = ﬁen = ﬁa\/% Let {0',...,0u} be
a maximal 28, packing of B(0,e,) = {6 € R%: 0|5 < &,}.

By a volume argument, we can get upper and lower bounds of M:

log M = dlog <cen> =c-d.
On
To upper bound the K-L divergence on top, we have

max (P, || Pje) = nmax D(By; | Pys)
_ n)|67 — 6%[|3
- 202
ne?
= 202
=c-d

Our quantities only depend on the ratio between ¢, and §,, so we can adjust the constant
in front of é,, to get the desired upper bound of %
We then get

1 1 [ 1\ ,d d
W > 00 == (= | 2% =022,
Ma 2 2(0)3 2<100>0n “
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1.5 Yang-Barron’s method

The bound on I(J; Z) by the max of the K-L divergences is generally only good when we
have a parametric problem. For nonparametric problems, we want to use a better bound.

Lemma 1.3 (Yang-Barron’s bound). Let Nxi,(¢;P) be an e-cover of P in /Dxky,. Then
1(z;J) < inf e +log Nk1(g; P)
3
To apply this bound, we have two steps:

1. Choose &, > 0 such that
5721 > log NKL(€n§ P)

2. Choose the largest d,, > 0 such that

log M (6,3 p, Q) > 42 4 21og 2.
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