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1 Methods for Proving Minimax Lower Bounds

1.1 Recap: Testing lemma and divergence measures for minimax lower
bounds

We have been studying minimax lower bounds. We have a semi-meric ρ : Θ × Θ → R≥0
and a 2δ-separated set {θ1, . . . , θM} ⊆ Θ. In our testing situation, we have the joint
distribution

Q :

{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

We have an increasing function Φ, as well. We proved the following result:

Proposition 1.1 (From estimation to testing). Let Ψ be increasing and {θ1, . . . , θM} be
2δ-separated for δ > 0. Then

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q(ψ(Z) 6= J).

We also defined the total variation distance the K-L divergence, and the Hellinger
distance

‖P−Q‖TV =
1

2

∫
X
|p(x)− q(x)| dx,

D(P || Q) =

∫
X
p(x) log

p(x)

q(x)
dx,

H2(P || Q)

∫
X

(
√
p(x)−

√
q(x))2 dx.

These had the following relationships:

‖P−Q‖TV ≤
√

1
2D(P || Q),
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‖P−Q‖TV ≤
√

H2(P || Q)

√
1− H2(P || Q)

4︸ ︷︷ ︸
≤1

.

H2(P || Q) ≤ 1

2
D(P || Q).

1.2 Le Cam’s two points method

Take M = 2. Then J ∼ Unif({0, 1}), and Z | J = j ∼ Pj , and Q = 1
2P0 + 1

2P1. We claim
that

inf
ψ

Q(ψ(Z) 6= J) =
1

2
(1− ‖P0 − P1‖TV).

Proof. For any ψ, we can find an A such that

ψ(x) =

{
1 x ∈ A
0 x ∈ Ac.

Then

Q(ψ(Z) = J) =
1

2
P1(A) +

1

2
P0(A

c)

=
1

2
(P1(A)− P0(A)) +

1

2
.

If we take the supremum over all ψ, we get

sup
ψ

Q(ψ(Z) = J) = sup
A

1

2
(P1(A)− P0(A)) +

1

2

=
1

2
‖P1 − P0‖TV +

1

2

The probability of the bad event is then

inf
ψ

Q(ψ(Z) 6= J) =
1

2
− 1

2
‖P1 − P0‖TV.

This gives the following theorem.

Theorem 1.1 (Le Cam’s two points lower bound). For all δ > 0 and P0,P1 ∈ P with
ρ(θ(P0), θ(P1)) ≥ 2δ,

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

2
(1− ‖P1 − P0‖TV).

For the generalization to Le Cam’s convex hull method, read chapter 15.2.2 in Wain-
wright’s textbook.
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Example 1.1 (Gaussian location family, d = 1). Our model is P = {Pθ = N(θ, σ2) : θ ∈
R}, where σ is known. We have the semimetric ρ(θ′, θ)) = |θ′ − θ| and Φ(t) = t2. Our

sample is X1:n ∼ Pnθ . The true minimax risk is Mn = σ2

n . Here is a lower bound by Le
Cam’s method:

Consider P2δ and P0, so ρ(2δ, 0) ≥ 2δ. Then

Mn(θ(P); |θ − θ′|2) ≥ δ2

2
(1− ‖Pn2δ − Pn0‖TV),

where the n only appears in the bound as the fact that the measures are product measures.
We want to lower bound 1 − ‖Pn2δ − Pn0‖TV by 1/2. We have by Pinsker’s inequality and
the tensorization property of K-L divergence

‖Pn2δ − Pn0‖2TV ≤
1

2
D(Pn2δ || Pn0 )

=
1

2
nD(P2δ || P0)

=
1

2
n

(2δ)2

2σ2

=
nδ2

σ2
.

Now choose nδ2n
σ2 = 1

2 , so δ2n = σ2

2n . Then ‖Pn2δn −Pn0‖TV ≤ 1
2 , and we get the minimax lower

bound

Mn ≥
δ2n
2
· 1

2
=

σ2

16n
.

Up to constants, this is sharp.

Here is the problem with Le Cam’s method. If we take θ ∈ Rd with Pθ = N(θ, σ2Id)
for d ≥ 2, then we will get the lower bound

Mn ≥
σ2

16n
,

even though the actual minimax risk is Mn = σ2 dn .

1.3 Mutual information

Here, we will develop some tools for Fano’s method, which is a sharper method for lower
bounding the minimax risk. Suppose we have two random variables (X,Y ) ∼ PX,Y . We
want a measure of their dependence/independence (not the same as correlation). If X is
independent of Y , we have

PX,Y = PX × PY =

∫
Y
PX,Y (x, y) dy ×

∫
X
PX,Y (x, y) dx.
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To get a measure of independence, we should look at the distance between these two
objects:

D

(
PX,Y ,

∫
Y
PX,Y (x, y) dy ×

∫
X
PX,Y (x, y) dx

)
.

Definition 1.1. The mutual information between X and Y is

I(X;Y ) := D(PX,Y || PX × PY ).

Remark 1.1. The mutual information is always ≥ 0. Although the K-L divergence is not
symmetric, we have I(X;Y ) = I(X;Y ).

If X and Y are independent, I(X;Y ) = 0, and if Y = f(X), the mutual information is
maximized.

Recall that

Q :

{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

Then

I(J ;Z) = D(Q2,J || Q2 ×QJ)

=
1

M

M∑
j=1

D(Pθj || baQ),

where

Q =
1

M

M∑
j=1

Pθj .

Suppose θj = θ for all j. Then I(J ;Z) = 0. Conversely, if the θj are far away from each
other, then I(J ;Z) will be large.

Here are two upper bounds of I(J ;Z) we will now prove:

Proposition 1.2.

I(J ;Z) ≤ 1

M2

M∑
j,k=1

D(Pθj || Pθk) ≤ max
j,k

D(Pθj || Pθk).

Lemma 1.1 (Yang-Barron’s bound). Let NKL(ε;P) be an ε-cover of P in
√
DKL. Then

I(Z; J) ≤ inf
ε>0

ε2 + logNKL(ε;P)
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1.4 Fano’s inequality

Let

Q :

{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

Lemma 1.2.

inf
ψ

Q(ψ(Z) 6= J) ≥ 1− I(Z; J) + log 2

logM
.

The proof is in Section 15.4 and requires some ideas such as the entropy. This does not
require any restriction on the Pθj . This lower bound gives us

Proposition 1.3. Let {θ1, . . . , θM} be 2δ-separated in the semimetric ρ. Then

Mn(θ(P); Φ ◦ ρ) ≥ Φ(δ)

(
1− I(Z; J) + log 2

logM

)
.

When using this lower bound, we will find δn such that

1− I(Z; J) + log 2

logM
≥ 1

2
.

Then we will get

Mn ≥
1

2
Φ(δn).

So we need to upper bound I(Z; J).
A simple upper bound is given by

I(J ;Z) =
1

M

M∑
j=1

D(Pθj ||
1

M

M∑
`=1

Pθ`)

≤ 1

M2

M∑
j,`=1

D(Pθj || Pθ`)

Where we have used Jensens’s inequality to show that the K-L divergence is convex in the
second argument.

≤ max
j,`

D(Pθj || Pθ`)

Example 1.2 (Gaussian location family, d ≥ 2). Our model is P = {Pθ = n(θ, σ2Id) : θ ∈
Rd}, where σ is known. Our semimetric is ρ(θ′, θ) = ‖θ′ − θ‖2 with Φ(t) = t2. The true
minimax risk is

Mn = inf
θ̂

sup
θ

E[‖θ̂ − θ‖22] = σ2
d

n
.
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The lower bound by Fano’s method gives

Mn ≥ Φ(δ)

(
1− I(Z; J) + log 2

logM

)
≥ Φ(δ)

(
1−

maxj,kD(Pn
θj
|| Pn

θk
) + log 2

logM

)
Our goal is to find the largest δn,M, {θ1, . . . , θM} such that

(a) ‖θj − θk‖2 ≥ 2δn

(b)
maxj,kD(Pn

θj
|| Pn

θk
) + log 2

logM
≤ 1

2
.

Here is our construction: Let εn = σ
√

d
n and δn = 1

100εn = 1
100σ

√
d
n . Let {θ1, . . . , θM} be

a maximal 2δn packing of B(0, εn) = {θ ∈ Rd : θ‖2 ≤ εn}.

By a volume argument, we can get upper and lower bounds of M :

logM � d log

(
c
εn
δn

)
� c · d.

To upper bound the K-L divergence on top, we have

max
j,k

D(Pnθj || P
n
θk) = nmax

j,k
D(Pθj || Pθk)

= nmax
j,k

n‖θj − θk‖22
2σ2

≤ nε2n
2σ2

= c · d

Our quantities only depend on the ratio between εn and δn, so we can adjust the constant
in front of δn to get the desired upper bound of 1

2 .
We then get

Mn ≥ Φ(δn)
1

2
=

1

2
·
(

1

100

)2

σ2
d

n
= cσ2

d

n
.
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1.5 Yang-Barron’s method

The bound on I(J ;Z) by the max of the K-L divergences is generally only good when we
have a parametric problem. For nonparametric problems, we want to use a better bound.

Lemma 1.3 (Yang-Barron’s bound). Let NKL(ε;P) be an ε-cover of P in
√
DKL. Then

I(Z; J) ≤ inf
ε>0

ε2 + logNKL(ε;P)

To apply this bound, we have two steps:

1. Choose εn > 0 such that
ε2n ≥ logNKL(εn;P).

2. Choose the largest δn > 0 such that

logM(δn; ρ,Ω) ≥ 4ε2n + 2 log 2.
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