Statistics 210B Lecture 27 Notes

Daniel Raban
April 28, 2022

1 Methods for Proving Minimax Lower Bounds

1.1 Recap: Testing lemma and divergence measures for minimax lower bounds

We have been studying minimax lower bounds. We have a semi-meric $\rho: \Theta \times \Theta \rightarrow \mathbb{R}_{\geq 0}$ and a 2δ-separated set $\left\{\theta^{1}, \ldots, \theta^{M}\right\} \subseteq \Theta$. In our testing situation, we have the joint distribution

$$
Q:\left\{\begin{array}{l}
J \sim \operatorname{Unif}(\{1,2, \ldots, M\}) \\
Z \mid J=j \sim \mathbb{P}_{\theta^{j}}
\end{array}\right.
$$

We have an increasing function Φ, as well. We proved the following result:
Proposition 1.1 (From estimation to testing). Let Ψ be increasing and $\left\{\theta^{1}, \ldots, \theta^{M}\right\}$ be 2δ-separated for $\delta>0$. Then

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \Phi(\delta) \inf _{\psi} \mathbb{Q}(\psi(Z) \neq J) .
$$

We also defined the total variation distance the K-L divergence, and the Hellinger distance

$$
\begin{gathered}
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}}=\frac{1}{2} \int_{\mathcal{X}}|p(x)-q(x)| d x \\
D(\mathbb{P} \| \mathbb{Q})=\int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} d x \\
\mathbb{H}^{2}(\mathbb{P} \| \mathbb{Q}) \int_{\mathcal{X}}(\sqrt{p(x)}-\sqrt{q(x)})^{2} d x
\end{gathered}
$$

These had the following relationships:

$$
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}} \leq \sqrt{\frac{1}{2} D(\mathbb{P} \| \mathbb{Q})}
$$

$$
\begin{gathered}
\|\mathbb{P}-\mathbb{Q}\|_{\mathrm{TV}} \leq \sqrt{\mathbb{H}^{2}(\mathbb{P} \| \mathbb{Q})} \underbrace{\sqrt{1-\frac{\mathbb{H}^{2}(\mathbb{P} \| \mathbb{Q})}{4}}}_{\leq 1} . \\
\mathbb{H}^{2}(\mathbb{P} \| \mathbb{Q}) \leq \frac{1}{2} D(\mathbb{P} \| \mathbb{Q})
\end{gathered}
$$

1.2 Le Cam's two points method

Take $M=2$. Then $J \sim \operatorname{Unif}(\{0,1\})$, and $Z \mid J=j \sim \mathbb{P}_{j}$, and $\overline{\mathbb{Q}}=\frac{1}{2} \mathbb{P}_{0}+\frac{1}{2} \mathbb{P}_{1}$. We claim that

$$
\inf _{\psi} \mathbb{Q}(\psi(Z) \neq J)=\frac{1}{2}\left(1-\left\|\mathbb{P}_{0}-\mathbb{P}_{1}\right\|_{\mathrm{TV}}\right) .
$$

Proof. For any ψ, we can find an A such that

$$
\psi(x)= \begin{cases}1 & x \in A \\ 0 & x \in A^{c} .\end{cases}
$$

Then

$$
\begin{aligned}
\mathbb{Q}(\psi(Z)=J) & =\frac{1}{2} \mathbb{P}_{1}(A)+\frac{1}{2} \mathbb{P}_{0}\left(A^{c}\right) \\
& =\frac{1}{2}\left(\mathbb{P}_{1}(A)-\mathbb{P}_{0}(A)\right)+\frac{1}{2}
\end{aligned}
$$

If we take the supremum over all ψ, we get

$$
\begin{aligned}
\sup _{\psi} \mathbb{Q}(\psi(Z)=J) & =\sup _{A} \frac{1}{2}\left(\mathbb{P}_{1}(A)-\mathbb{P}_{0}(A)\right)+\frac{1}{2} \\
& =\frac{1}{2}\left\|\mathbb{P}_{1}-\mathbb{P}_{0}\right\|_{\mathrm{TV}}+\frac{1}{2}
\end{aligned}
$$

The probability of the bad event is then

$$
\inf _{\psi} \mathbb{Q}(\psi(Z) \neq J)=\frac{1}{2}-\frac{1}{2}\left\|\mathbb{P}_{1}-\mathbb{P}_{0}\right\|_{\mathrm{TV}}
$$

This gives the following theorem.
Theorem 1.1 (Le Cam's two points lower bound). For all $\delta>0$ and $\mathbb{P}_{0}, \mathbb{P}_{1} \in \mathcal{P}$ with $\rho\left(\theta\left(\mathbb{P}_{0}\right), \theta\left(\mathbb{P}_{1}\right)\right) \geq 2 \delta$,

$$
\mathcal{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \frac{\Phi(\delta)}{2}\left(1-\left\|\mathbb{P}_{1}-\mathbb{P}_{0}\right\|_{\mathrm{TV}}\right)
$$

For the generalization to Le Cam's convex hull method, read chapter 15.2.2 in Wainwright's textbook.

Example 1.1 (Gaussian location family, $d=1$). Our model is $\mathcal{P}=\left\{\mathbb{P}_{\theta}=N\left(\theta, \sigma^{2}\right): \theta \in\right.$ $\mathbb{R}\}$, where σ is known. We have the semimetric $\left.\rho\left(\theta^{\prime}, \theta\right)\right)=\left|\theta^{\prime}-\theta\right|$ and $\Phi(t)=t^{2}$. Our sample is $X_{1: n} \sim \mathbb{P}_{\theta}^{n}$. The true minimax risk is $\mathcal{M}_{n}=\frac{\sigma^{2}}{n}$. Here is a lower bound by Le Cam's method:

Consider $\mathbb{P}_{2 \delta}$ and \mathbb{P}_{0}, so $\rho(2 \delta, 0) \geq 2 \delta$. Then

$$
\mathcal{M}_{n}\left(\theta(\mathcal{P}) ;\left|\theta-\theta^{\prime}\right|^{2}\right) \geq \frac{\delta^{2}}{2}\left(1-\left\|\mathbb{P}_{2 \delta}^{n}-\mathbb{P}_{0}^{n}\right\|_{\mathrm{TV}}\right)
$$

where the n only appears in the bound as the fact that the measures are product measures. We want to lower bound $1-\left\|\mathbb{P}_{2 \delta}^{n}-\mathbb{P}_{0}^{n}\right\|_{\mathrm{TV}}$ by $1 / 2$. We have by Pinsker's inequality and the tensorization property of K-L divergence

$$
\begin{aligned}
\left\|\mathbb{P}_{2 \delta}^{n}-\mathbb{P}_{0}^{n}\right\|_{\mathrm{TV}}^{2} & \leq \frac{1}{2} D\left(\mathbb{P}_{2 \delta}^{n} \| \mathbb{P}_{0}^{n}\right) \\
& =\frac{1}{2} n D\left(\mathbb{P}_{2 \delta} \| \mathbb{P}_{0}\right) \\
& =\frac{1}{2} n \frac{(2 \delta)^{2}}{2 \sigma^{2}} \\
& =\frac{n \delta^{2}}{\sigma^{2}}
\end{aligned}
$$

Now choose $\frac{n \delta_{n}^{2}}{\sigma^{2}}=\frac{1}{2}$, so $\delta_{n}^{2}=\frac{\sigma^{2}}{2 n}$. Then $\left\|\mathbb{P}_{2 \delta_{n}}^{n}-\mathbb{P}_{0}^{n}\right\|_{\mathrm{TV}} \leq \frac{1}{2}$, and we get the minimax lower bound

$$
\mathcal{M}_{n} \geq \frac{\delta_{n}^{2}}{2} \cdot \frac{1}{2}=\frac{\sigma^{2}}{16 n}
$$

Up to constants, this is sharp.
Here is the problem with Le Cam's method. If we take $\theta \in \mathbb{R}^{d}$ with $\mathbb{P}_{\theta}=N\left(\theta, \sigma^{2} I_{d}\right)$ for $d \geq 2$, then we will get the lower bound

$$
\mathcal{M}_{n} \geq \frac{\sigma^{2}}{16 n}
$$

even though the actual minimax risk is $\mathcal{M}_{n}=\sigma^{2} \frac{d}{n}$.

1.3 Mutual information

Here, we will develop some tools for Fano's method, which is a sharper method for lower bounding the minimax risk. Suppose we have two random variables $(X, Y) \sim \mathbb{P}_{X, Y}$. We want a measure of their dependence/independence (not the same as correlation). If X is independent of Y, we have

$$
\mathbb{P}_{X, Y}=\mathbb{P}_{X} \times \mathbb{P}_{Y}=\int_{\mathcal{Y}} \mathbb{P}_{X, Y}(x, y) d y \times \int_{\mathcal{X}} P_{X, Y}(x, y) d x
$$

To get a measure of independence, we should look at the distance between these two objects:

$$
D\left(\mathbb{P}_{X, Y}, \int_{\mathcal{Y}} \mathbb{P}_{X, Y}(x, y) d y \times \int_{\mathcal{X}} P_{X, Y}(x, y) d x\right)
$$

Definition 1.1. The mutual information between X and Y is

$$
I(X ; Y):=D\left(\mathbb{P}_{X, Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)
$$

Remark 1.1. The mutual information is always ≥ 0. Although the K-L divergence is not symmetric, we have $I(X ; Y)=I(X ; Y)$.

If X and Y are independent, $I(X ; Y)=0$, and if $Y=f(X)$, the mutual information is maximized.

Recall that

$$
Q:\left\{\begin{array}{l}
J \sim \operatorname{Unif}(\{1,2, \ldots, M\}) \\
Z \mid J=j \sim \mathbb{P}_{\theta^{j}} .
\end{array}\right.
$$

Then

$$
\begin{aligned}
I(J ; Z) & =D\left(\mathbb{Q}_{2, J} \| \mathbb{Q}_{2} \times \mathbb{Q}_{J}\right) \\
& =\frac{1}{M} \sum_{j=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| b a \mathbb{Q}\right),
\end{aligned}
$$

where

$$
\bar{Q}=\frac{1}{M} \sum_{j=1}^{M} \mathbb{P}_{\theta^{j}}
$$

Suppose $\theta^{j}=\theta$ for all j. Then $I(J ; Z)=0$. Conversely, if the θ^{j} are far away from each other, then $I(J ; Z)$ will be large.

Here are two upper bounds of $I(J ; Z)$ we will now prove:

Proposition 1.2.

$$
I(J ; Z) \leq \frac{1}{M^{2}} \sum_{j, k=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{k}}\right) \leq \max _{j, k} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{k}}\right)
$$

Lemma 1.1 (Yang-Barron's bound). Let $N_{\mathrm{KL}}(\varepsilon ; \mathcal{P})$ be an ε-cover of \mathcal{P} in $\sqrt{D_{\mathrm{KL}}}$. Then

$$
I(Z ; J) \leq \inf _{\varepsilon>0} \varepsilon^{2}+\log N_{\mathrm{KL}}(\varepsilon ; \mathcal{P})
$$

1.4 Fano's inequality

Let

$$
Q:\left\{\begin{array}{l}
J \sim \operatorname{Unif}(\{1,2, \ldots, M\}) \\
Z \mid J=j \sim \mathbb{P}_{\theta_{j}} .
\end{array}\right.
$$

Lemma 1.2.

$$
\inf _{\psi} \mathbb{Q}(\psi(Z) \neq J) \geq 1-\frac{I(Z ; J)+\log 2}{\log M} .
$$

The proof is in Section 15.4 and requires some ideas such as the entropy. This does not require any restriction on the $\mathbb{P}_{\theta j}$. This lower bound gives us

Proposition 1.3. Let $\left\{\theta^{1}, \ldots, \theta^{M}\right\}$ be 2δ-separated in the semimetric ρ. Then

$$
\mathcal{M}_{n}(\theta(\mathcal{P}) ; \Phi \circ \rho) \geq \Phi(\delta)\left(1-\frac{I(Z ; J)+\log 2}{\log M}\right)
$$

When using this lower bound, we will find δ_{n} such that

$$
1-\frac{I(Z ; J)+\log 2}{\log M} \geq \frac{1}{2}
$$

Then we will get

$$
\mathcal{M}_{n} \geq \frac{1}{2} \Phi\left(\delta_{n}\right) .
$$

So we need to upper bound $I(Z ; J)$.
A simple upper bound is given by

$$
\begin{aligned}
I(J ; Z)=\frac{1}{M} \sum_{j=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| \frac{1}{M} \sum_{\ell=1}^{M} \mathbb{P}_{\theta^{\ell}}\right) & \\
& \leq \frac{1}{M^{2}} \sum_{j, \ell=1}^{M} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{\ell}}\right)
\end{aligned}
$$

Where we have used Jensens's inequality to show that the K-L divergence is convex in the second argument.

$$
\leq \max _{j, \ell} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{\ell}}\right)
$$

Example 1.2 (Gaussian location family, $d \geq 2$). Our model is $\mathcal{P}=\left\{\mathbb{P}_{\theta}=n\left(\theta, \sigma^{2} I_{d}\right): \theta \in\right.$ $\left.\mathbb{R}^{d}\right\}$, where σ is known. Our semimetric is $\rho\left(\theta^{\prime}, \theta\right)=\left\|\theta^{\prime}-\theta\right\|_{2}$ with $\Phi(t)=t^{2}$. The true minimax risk is

$$
\mathcal{M}_{n}=\inf _{\widehat{\theta}} \sup _{\theta} \mathbb{E}\left[\|\widehat{\theta}-\theta\|_{2}^{2}\right]=\sigma^{2} \frac{d}{n} .
$$

The lower bound by Fano's method gives

$$
\begin{aligned}
\mathcal{M}_{n} & \geq \Phi(\delta)\left(1-\frac{I(Z ; J)+\log 2}{\log M}\right) \\
& \geq \Phi(\delta)\left(1-\frac{\max _{j, k} D\left(\mathbb{P}_{\theta^{j}}^{n} \| \mathbb{P}_{\theta^{k}}^{n}\right)+\log 2}{\log M}\right)
\end{aligned}
$$

Our goal is to find the largest $\delta_{n}, M,\left\{\theta^{1}, \ldots, \theta^{M}\right\}$ such that
(a) $\left\|\theta^{j}-\theta^{k}\right\|_{2} \geq 2 \delta_{n}$
(b)

$$
\frac{\max _{j, k} D\left(\mathbb{P}_{\theta^{j}}^{n} \| \mathbb{P}_{\theta^{k}}^{n}\right)+\log 2}{\log M} \leq \frac{1}{2}
$$

Here is our construction: Let $\varepsilon_{n}=\sigma \sqrt{\frac{d}{n}}$ and $\delta_{n}=\frac{1}{100} \varepsilon_{n}=\frac{1}{100} \sigma \sqrt{\frac{d}{n}}$. Let $\left\{\theta^{1}, \ldots, \theta_{M}\right\}$ be a maximal $2 \delta_{n}$ packing of $B\left(0, \varepsilon_{n}\right)=\left\{\theta \in \mathbb{R}^{d}: \theta \|_{2} \leq \varepsilon_{n}\right\}$.

By a volume argument, we can get upper and lower bounds of M :

$$
\log M \asymp d \log \left(c \frac{\varepsilon_{n}}{\delta_{n}}\right) \asymp c \cdot d .
$$

To upper bound the K-L divergence on top, we have

$$
\begin{aligned}
\max _{j, k} D\left(\mathbb{P}_{\theta^{j}}^{n} \| \mathbb{P}_{\theta^{k}}^{n}\right) & =n \max _{j, k} D\left(\mathbb{P}_{\theta^{j}} \| \mathbb{P}_{\theta^{k}}\right) \\
& =n \max _{j, k} \frac{n\left\|\theta^{j}-\theta^{k}\right\|_{2}^{2}}{2 \sigma^{2}} \\
& \leq \frac{n \varepsilon_{n}^{2}}{2 \sigma^{2}} \\
& =c \cdot d
\end{aligned}
$$

Our quantities only depend on the ratio between ε_{n} and δ_{n}, so we can adjust the constant in front of δ_{n} to get the desired upper bound of $\frac{1}{2}$.

We then get

$$
\mathcal{M}_{n} \geq \Phi\left(\delta_{n}\right) \frac{1}{2}=\frac{1}{2} \cdot\left(\frac{1}{100}\right)^{2} \sigma^{2} \frac{d}{n}=c \sigma^{2} \frac{d}{n}
$$

1.5 Yang-Barron's method

The bound on $I(J ; Z)$ by the max of the K-L divergences is generally only good when we have a parametric problem. For nonparametric problems, we want to use a better bound.

Lemma 1.3 (Yang-Barron's bound). Let $N_{\mathrm{KL}}(\varepsilon ; \mathcal{P})$ be an ε-cover of \mathcal{P} in $\sqrt{D_{\mathrm{KL}}}$. Then

$$
I(Z ; J) \leq \inf _{\varepsilon>0} \varepsilon^{2}+\log N_{\mathrm{KL}}(\varepsilon ; \mathcal{P})
$$

To apply this bound, we have two steps:

1. Choose $\varepsilon_{n}>0$ such that

$$
\varepsilon_{n}^{2} \geq \log N_{\mathrm{KL}}\left(\varepsilon_{n} ; \mathcal{P}\right)
$$

2. Choose the largest $\delta_{n}>0$ such that

$$
\log M\left(\delta_{n} ; \rho, \Omega\right) \geq 4 \varepsilon_{n}^{2}+2 \log 2
$$

